Evidence that Ca(2+) cycling by the plasma membrane Ca(2+)-ATPase increases the 'excitability' of the extracellular Ca(2+)-sensing receptor.

نویسندگان

  • Annunziata De Luisi
  • Aldebaran M Hofer
چکیده

The extracellular Ca(2+)-sensing receptor (CaR) is a widely expressed G-protein-coupled receptor that translates information about [Ca(2+)] in the extracellular milieu to the interior of the cell, usually via intracellular Ca(2+) signaling pathways. Using fura-2 imaging of cytoplasmic [Ca(2+)], we observed that HEK293 cells expressing CaR oscillated readily under conditions permissive for CaR activation. Spiking was also triggered in the absence of external Ca(2+) by the CaR agonist spermine (1 mM). Oscillating cells were typically located in clusters of closely apposed cells, but Ca(2+) spiking was insensitive to the gap junction inhibitor 18alpha-glycyrrhetinic acid. We hypothesized that Ca(2+) signals might be amplified, in part, through a positive feedback loop in which Ca(2+) extrusion via the plasma membrane Ca(2+)-ATPase (PMCA) activates CaRs on the same cell or adjacent cells through local increases in [Ca(2+)](out). In support of this idea, addition of exogenous Ca(2+) buffers (keeping free [Ca(2+)](out) constant) attenuated or eliminated Ca(2+) signals (manifested as oscillations), as did PMCA inhibitors (HgCl(2), orthovanadate and Caloxin 2A1). Measurement of extracellular [Ca(2+)] using the near membrane probe fura-C(18) revealed that external [Ca(2+)] rose following receptor activation, sometimes displaying an oscillatory pattern. Our data suggest that PMCA-mediated cycling of Ca(2+) across the plasma membrane leads to localized increases in [Ca(2+)](out) that increase the excitability of CaR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymmetrical, agonist-induced fluctuations in local extracellular [Ca(2+)] in intact polarized epithelia.

We recently proposed that extracellular Ca(2+) ions participate in a novel form of intercellular communication involving the extracellular Ca(2+)-sensing receptor (CaR). Here, using Ca(2+)-selective microelectrodes, we directly measured the profile of agonist-induced [Ca(2+)]ext changes in restricted domains near the basolateral or luminal membranes of polarized gastric acid-secreting cells. Th...

متن کامل

Extracellular Calcium Controls Background Current and Neuronal Excitability via an UNC79-UNC80-NALCN Cation Channel Complex

In contrast to its extensively studied intracellular roles, the molecular mechanisms by which extracellular Ca(2+) regulates the basal excitability of neurons are unclear. One mechanism is believed to be through Ca(2+)'s interaction with the negative charges on the cell membrane (the charge screening effect). Here we show that, in cultured hippocampal neurons, lowering [Ca(2+)](e) activates a N...

متن کامل

Inhibition of the plasma membrane Ca2+ pump by CD44 receptor activation of tyrosine kinases increases the action potential afterhyperpolarization in sensory neurons.

The cytoplasmic Ca(2+) clearance rate affects neuronal excitability, plasticity, and synaptic transmission. Here, we examined the modulation of the plasma membrane Ca(2+) ATPase (PMCA) by tyrosine kinases. In rat sensory neurons grown in culture, the PMCA was under tonic inhibition by a member of the Src family of tyrosine kinases (SFKs). Ca(2+) clearance accelerated in the presence of selectiv...

متن کامل

Ca2+ removal by the plasma membrane Ca2+-ATPase influences the contribution of mitochondria to activity-dependent Ca2+ dynamics in Aplysia neuroendocrine cells.

After Ca(2+) influx, mitochondria can sequester Ca(2+) and subsequently release it back into the cytosol. This form of Ca(2+)-induced Ca(2+) release (CICR) prolongs Ca(2+) signaling and can potentially mediate activity-dependent plasticity. As Ca(2+) is required for its subsequent release, Ca(2+) removal systems, like the plasma membrane Ca(2+)-ATPase (PMCA), could impact CICR. Here we examine ...

متن کامل

Visualization of localized store-operated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum.

Unloading of endoplasmic reticulum (ER) Ca(2+) stores activates influx of extracellular Ca(2+) through 'store-operated' Ca(2+) channels (SOCs) in the plasma membrane (PM) of most cells, including astrocytes. A key unresolved issue concerning SOC function is their spatial relationship to ER Ca(2+) stores. Here, using high resolution imaging with the membrane-associated Ca(2+) indicator, FFP-18, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 116 Pt 8  شماره 

صفحات  -

تاریخ انتشار 2003